Detecting Spammers with SNARE: Spatio-temporal Network-level Automatic Reputation Engine
نویسندگان
چکیده
Users and network administrators need ways to filter email messages based primarily on the reputation of the sender. Unfortunately, conventional mechanisms for sender reputation—notably, IP blacklists—are cumbersome to maintain and evadable. This paper investigates ways to infer the reputation of an email sender based solely on network-level features, without looking at the contents of a message. First, we study first-order properties of network-level features that may help distinguish spammers from legitimate senders. We examine features that can be ascertained without ever looking at a packet’s contents, such as the distance in IP space to other email senders or the geographic distance between sender and receiver. We derive features that are lightweight, since they do not require seeing a large amount of email from a single IP address and can be gleaned without looking at an email’s contents—many such features are apparent from even a single packet. Second, we incorporate these features into a classification algorithm and evaluate the classifier’s ability to automatically classify email senders as spammers or legitimate senders. We build an automated reputation engine, SNARE, based on these features using labeled data from a deployed commercial spam-filtering system. We demonstrate that SNARE can achieve comparable accuracy to existing static IP blacklists: about a 70% detection rate for less than a 0.3% false positive rate. Third, we show how SNARE can be integrated into existing blacklists, essentially as a first-pass filter.
منابع مشابه
معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملSTCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملOn the α-Sensitivity of Nash Equilibria in PageRank-Based Network Reputation Games
Web search engines use link-based reputation systems (e.g. PageRank) to measure the importance of web pages, giving rise to the strategic manipulations of hyperlinks by spammers and others to boost their web pages’ reputation scores. Hopcroft and Sheldon [10] study this phenomenon by proposing a network formation game in which nodes strategically select their outgoing links in order to maximize...
متن کاملSIP Service Providers and The Spam Problem
The Session Initiation Protocol (SIP) is used for managing multimedia sessions in the Internet. As an emerging standard gaining more and more acceptance within the IT community, SIP will probably be the target of spammers. We propose, in this paper, a reputation-based mechanism that builds trust between users within a SIP community and prevents spammers to carry out attacks. Our technique uses ...
متن کامل